
REINFORCEMENTREINFORCEMENTREINFORCEMENT
LEARNINGLEARNINGLEARNING

Training

Research ares of RL
Describe basic RL algorithms and test them
with examples
Create a learning environment and train a RL
agent
Enter the agent into the Connect-X
competition

Objectives:
Hash the board and look for it in the state
index
if found; Search the a table for the move
values associated with the state and choose
the one with the highest value
else; Add the state to the state index and add
a new row to the q-table to represent the
action values (all 1,s) and choose a move at
random

Agent Algorithm:

While playing a game, each move made by the
agent is recorded and given a reward
depending on the outcome
The reward is then used to update the
 (state,action) pair within the Q-table
according to the Bellman equation (see below)
 Once all games have been played the Q-table
is saved and ready for use by the agent.

Training algorithm:

The inability for a a-table to adapt to new
rules such as new columns (i.e. new available
moves) is a problem.
The number of states for a connect 4 board
are >4.5 trillion. Combined with all other
possible states of all possible board
configurations, it is unwise to find and store
them all
A better solution would be to use neural
networks to find the optimum policy of the
game.

Conclusion:

Aims & Objectives

Problem

Environment

Q-agent

Results & Conclusion

Aim: Create a reinforcement learning agent
to play in Kaggles Connect-X competition

Connect X tokens in a row to
win (default = 4)
Board dimensions can change
(default = 6 x 7)

Game Rules:

Here is where the agent will interact and learn. An
empty board is created, the players then take
turns inputting counters until one of them wins or
the board is full.

R = 20: for win
R = -20: for loss
R = 5: for draw
R = -0.1: for non game
ending moves

Reward System:

alpha = 0.9
gamma = 0.9

Training Parameteres:

Author
Sam Hennessey

sml18vly@bangor.ac.uk

Supervisor
Prof. Ludmila Kuncheva

l.I.kuncheva@bangor.ac.uk

The agent must be submitted
as a .py file.

The environment was
created using MATLAB

MATLAB Testing: 100 games played.

96% - win
4% - loss
0% - draw

Vs Random agent
58% - win
39% - loss
3% - draw

Vs Rule Agent

Leaderboard Position: 465 Total Agents

