
The Effect of Procedural Generation
on a Game’s Replay Value

Introduction
When referring to a game’s replay value, or replayability, We refer to the potential for a
game to be played repetitively after the first playthrough. For many games, this can be due
to hidden easter eggs, alternate endings, speed runs and achievement hunting etc.
Procedural generation is a game mechanic that can fall under this list of affecting replay
value within video games. This mechanic is the basis in which an algorithm can create data
such as level layouts and terrain, or types of characters. These algorithms would work hand
in hand with pre-made assets to generate a final product. What my project focuses on is how
this aspect of game design can impact a game’s replay value?

Examples of Procedural Generation
One of the earliest and most well known examples of procedurally
generated content in video games can be found with the dungeon crawler
game Rogue (1980). Using ASCII with a square grid structure, the game
generates a dungeon level for the user to explore. Each run of the game
would create the level in a unique layout. This game led to the genre known
as “Roguelike”, involving randomly generated dungeon crawlers.

As video games started to become more of a forefront of entertainment,
more games began to use the concept of PCG. From more dungeon crawlers
such as Diablo (1997), to more lower-scaled random generation algorithm
such as Tetris (1984).

Today, games push the concept of PCG to new heights, creating whole
terrain or entire worlds, such examples are most well known in games such
as Minecraft (2011) and NoMan’s Sky (2016).

Project Work
To determine what aspect of Procedural Generation actually impacts replay
value, the project focused on creating a 2D dungeon crawler prototype. The
main aspect of the prototype would be the generation of the dungeon being
different each time, giving a new experience every time. Some iterations
would be more challenging to play than others. The dungeon prototype
objective is simply for the player to reach the boss room as he consistently
shoots at you whilst you navigate the level; each hit sends the player to the
spawn junction room.

The prototype is built off a simple algorithm tutorial series (Blackthornprod:
tinyurl.com/4ahe48s4) that has been adapted to add extra features, with
rooms containing more enemies that send the player to spawn on touch.
Such rooms will also have chances of spawning random decorations from
torches to spider webs, using PCG for additional atmosphere.

Tech Behind
The project has been created using the Unity
Engine, version 2019.4.15f1, due to previous
experience within other modules involving two
other projects. This has allowed for the use of C#
scripts in order to generate the dungeons as
anticipated, alongside the spawning of varying
decorations.

This has also allowed for the use of 2D sprite
assets in which have been customised using the
Image Manipulation Program known as GIMP,
taking advantage of the ability to create 16x16px
images.

Evaluation and Conclusion
The prototype will be given to different subjects to play through
multiple times. Once the players have completed their runs, they shall
be given a questionnaire to fill regarding their experience. Such
questions involved would include how their overall experience was, if
they would play again as it were or with additional features, what they
enjoyed the most, what was least enjoyed, would they have preferred
if the levels were already mapped out etc.

The main focus on what is being asked is their opinion of the
prototype’s replay value. Using this data, we can analyse the replay
value of the prototype and view the impact that PCG has as a whole on
the dungeon crawler. From here, we can compare the research to
other Procedurally Generated games and then apply back to the
overall question of how Procedural Generation affects the replay value
of video games.

Future Work
The research on the replay impact of
Procedural Generation could possibly pave
the way to looking into how to improve
replay value on certain games using PCG.
Perhaps one could look into the limitations
presented by PCG and how one could
overcome them.

Maybe one could move from PCG and
instead explore other areas that apply to a
game’s replay value, allowing for other
developers to take note and focus on their
future projects.

Author: Andrew Aston
Supervisor: Llyr Ap Cenydd

Rogue (1980)

Tetris (1984)

Minecraft (2011)

No Man’s Sky (2016)

Prototype Generation 1 Prototype Generation 3Prototype Generation 2

Each run of the prototype generates an entirely unique level. Some can
be bigger than other and some can hold different decorations inside
certain rooms


