
Author

Adam Watson
adamw200100@gmail.com

Supervisor

Llyr Ap Cenydd
llyr.ap.cenydd@bangor.ac.uk

The aim for this project is to research how

procedural generation is used to create realistic

environments and use it to produce a video game

to show what has been found in the research.

The video game will allow you to move around an

endless world populated with plants that have

been randomly placed and generated using

algorithms. It will show how these algorithms can

be used to create games that can have almost

infinite worlds and environments to explore,

which in turn creates a new experience every

time you start a new game. It will show how you

can use significantly less memory then most

other games and run just as smoothly.

Procedural generation is term used to describe the method

of creating data from an algorithm. Procedural generation

can be used for many things from creating textures and

terrains to more sophisticated things like loot systems and

character creation.

Procedural generation uses a seed to generate a new set of

data every time a new seed is used which is how you get a

new experience every time you create a new world, this also

means that you can use the same seed to replicate the same

data every time as well.

Render distances are used to keep memory usage as

minimal as possible by only rendering game chunks in a

certain distance to the player, this allows for smooth

gameplay and low memory consumption.

Perlin noise is an algorithm invented by Ken Perlin in 1983 that

creates a set of pseudo random numbers. A classic random number

generator produces numbers that have no relationship to each other

making it very erratic which would create unrealistic terrain. Perlin

noise fixes that problem by having each random number have a

relationship between then, making the numbers form smooth curves

and no sharp spikes which makes the terrain very realistic. The Perlin

noise function returns values from 0 to 1.

In Figure 1 you can see a Perlin noise map that was generated in Unity

where each value represents a colour from black to white. In Figure 2

colour thresholds have been added so that different values represent

different colours to represent different parts of the terrain. Finally

Figure 3 is a terrain mesh created by adding height based on the value

of the point, for example if the point is the value 1 it will be a peak

and between 0 and 0.4 values is the water.

Figure 1 - noise map

using Perlin's algorithm

Figure 2 - colour map

using Perlin's algorithm

Figure 3 - virtual terrain chunks generated by

using Perlin's algorithm to create a mesh

Figure 4 - plant created

using L-systems rule

set and 2 iterations

L-systems are a way of procedurally

generating plants in a virtual space. They use

a very simple algorithm where you have a

string of characters and each character

represents an instruction to build the plant,

For example ‘F’ means go up and ‘+’ means to

rotate on the axis.

It starts with an axiom, usually the character

‘X’ and uses rules to build a long string of

characters through a number of iterations, to

finally reach a complete set of instructions.

The rules used are very simple it looks at a

character for example ‘X’ and then says turn

the ‘X’ into ‘FFX’, it does this for every

character in the string. Figure 4 and Figure 5

show how plants can look different using

different amounts of iterations used.

Project made in Unity using the 

C# language and Unity libraries.

If given more time to work on this project the

game could include more algorithms to create

more unique terrains such as biomes which

contain unique plants and animals. Cave

systems could be implemented to allow even

more experience for the player by allowing

exploration of procedurally generated caverns.

Animals could be procedurally generated to

create unique looking animals everywhere.

The player could have the tools to destroy and

create new data allowing them to sculpt the

world to look how they desire giving them even

more experiences and allowing the game to be

more fulfilling. Procedural generation can have

infinite possibilities for the future of the game.

Figure 5 - plant created

using L-systems rule

set and 6 iterations


