Introduction and Background

An Optical time-domain reflectometer (OTDRs) is a device that can send pulses down fibre optic lines and is able to read the reflected light signature in order to act as a optical radar, alerting the user to a fault point, however, these can be expensive. By introducing chaos to existing OTDR technology chaotic correlation optical timedomain reflectometers (CCOTDR) may be used to reduce the cost of manufacturing and operation.

- Offer higher spatial resolution as the bandwidths of the waves generated are over 10GHz overcoming limitations of previous technology (COTDR)[1]
- The scaling of the time-delay with respect to the laser internal timescale and the sensitivity of the phase to the returning field create a means of inducing various dynamical scenarios leading to chaos

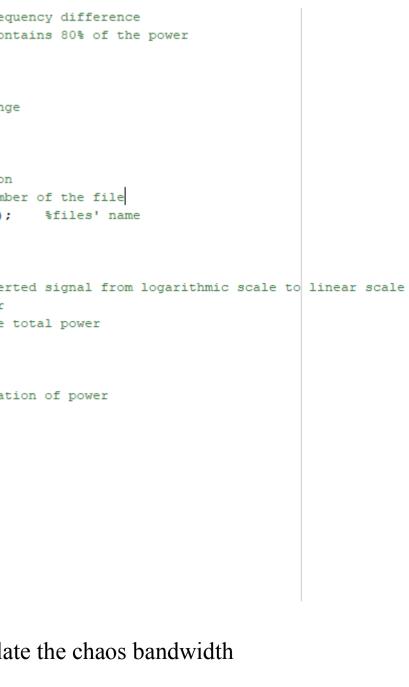
Method and Approach

30

After doing sufficient background research into the areas relating to the project, mainly using MATLAB to simulate chaotic signal created via a feedback loop and to calculate useful parameters such as Bandwidth as well as providing a platform to create graphs.

8	%%%%%%parameters of the lasers and t	he filter%%%%%%%%%		
9 —	b=3.2;	<pre>% linewidth enhancement factor</pre>		
10 -	rc=5.36e11;	% cavity decay rate		
11 -	rn=7.53e9;	<pre>% differential carrier relaxation rate</pre>		
12 -	rp=1.91e10;	<pre>% nonilinear carrier relaxation rate</pre>		
13 -	rs=5.96e9;	% spontaneous carrier relaxation		
14 -	J=1.222;	% normalized bias current above threshold		
15 -	dv=le6;	full width at halfo-maximum (FWHM) optical linewidth when the slave laser is	free-	runing
16				.
17 -	T_in=0;	% injection coefficient	•	Use
18 -	f=0;	% detuing frequency beween the master laser and slave laser		
19 -	R_fkl=0;	% reflection coefficient of the ist feedback loop		dela
20 -	<pre>R_fk2=[0;0.03;0.15;0.3];</pre>	% reflection coefficient of the 2nd feedback loop		
21 -	h=1e-12;	% step of the simulation		Che
22 -	fk_tao1=2.4e-9;	% time delay induced by the 1st feedback loop	•	CII
23 -	fk_tao2=10e-10;	% time delay induced by the 2nd feedback loop		C12 0
24 -	t0=2000e-9;	% span of the simulaiton		spe
25 -	t=0:h:t0;	% time		
26 -	L=length(t);	% total steps of the simulation	•	Co
27 -	fL=floor(L*0.5+1);	% start time of the figure		
28 -	fH=floor(L*1);	% end time of the figure		
29				

Figure 1.Example of Variables in a script used together multiple simulations of a single feedback loop each with varying pre-sets to be used.


clear all		1	%chaos bandwidth is	defined as the freq		
tic		2	%between dc and the	frequency which cor		
delay=220; %total delay time calculated		3				
deray-220, stobal deray time calculated		4 —	clear <u>all</u>			
		5 -	tic			
kl=1;% the first data files' number		6 -	<pre>fr_rang=30;</pre>	%Frequency rang		
k2=4;%the last data files' number			k1=2;			
]for k=k1:k2		8 —	k2=4;			
<pre>acc=zeros(delay+1,2);</pre>		9 -	kk=k2-k1+1;			
<pre>name=sprintf('P%d l00.dat',k); %data file</pre>		LO —	<pre>bw=zeros(kk,2);</pre>	%data dimensior		
datal=load(name); %load data			<pre>- for k=k1:k2</pre>	% The serial numk		
data=data1(:,2); %taken the second column data		.2 -	namel=sprintf('100r:	tspeciig%d.dat', k);		
		.3 .4 -	datal=load(namel);%	and the data		
N=length(data).Statal number of complex		.4 -	L=length(datal(:,2))			
N=length(data);%total number of samples		.6 -	data2=10.^(data1(:,2))			
my=sum(data)/N;%Mean value		7 -	tot=sum(data2(3:L))			
		.8 -	s1=0.8*tot	%80% of the		
		9 -	freq=0;			
]for tt=0:delay		20 -	s=0;			
s1=0;		21 -	for t=3:L			
t=0;		2 -	<pre>s=s+data2(t);</pre>	%Accumulat		
]for m=1:(N-delay)		23 -	if s <sl< td=""><td></td></sl<>			
<pre>sl=sl+(data(m)-my)*(data(m+tt)-my);</pre>		24 -	freq=fr_ran	g/(L-1)*t;		
$t=t+(data(m)-my)^{2};$		25 -	end			
		26				
- end		27 -	- end			
<pre>acc(tt+1,2)=sl/t;%Auto-correlation coefficient data is save at the second c</pre>	olumn	28 -	bw(k-kl+1, 1)=k;			
- end		29 -	<pre>bw(k-kl+1,2)=freq;</pre>			
<pre>acc(1:delay+1,1)=((0:delay)/10)'; %first colum is for delay time</pre>		30 -	^L end			
<pre>save(sprintf('acc_P0%d.dat',k), 'acc', '-ascii')</pre>		31				
figure(k+4)		32 -	<pre>save bw2ndTD10neg4.</pre>	lat bw -ascii		
plot(acc(:,1), acc(:,2))		33 -	toc			
<pre>xlabel('Time Shift (ns)')</pre>						
ylabel('Auto correlation (a.u.)')						
YTADET (Auto Corretation (a.u.))		Figure 3, MATLAB script to calcula				
			of each case in one go			
zoom on;grid on;		U1		50		
- end Figure 2 A script used to generate auto correlation against time grap	h					
Figure 2. A script used to generate auto correlation against time grap	11					
toc						

Aims and Objectives

- Understanding chaos- what it is what are its uses in the real world
- Understanding Semiconductor lasers- what they are, how they work, what's the most suitable design involving them for my project
- Understanding different methods to generate chaos using semiconductor laser-what are they, how do they work, pros and cons of each etc
- Demonstrate chaos OTDRs by using chaotic signal using semiconductor lasers subject to optical feedback

Low-Cost Chaotic Correlation Optical Time Domain Reflectometer

- sed scripts to quickly change variables such as Time elay and reflection coefficient off the first loop
- hecking impact of change on structure of graphs for ectrums and auto correlation
- omparison of simulated bandwidth results

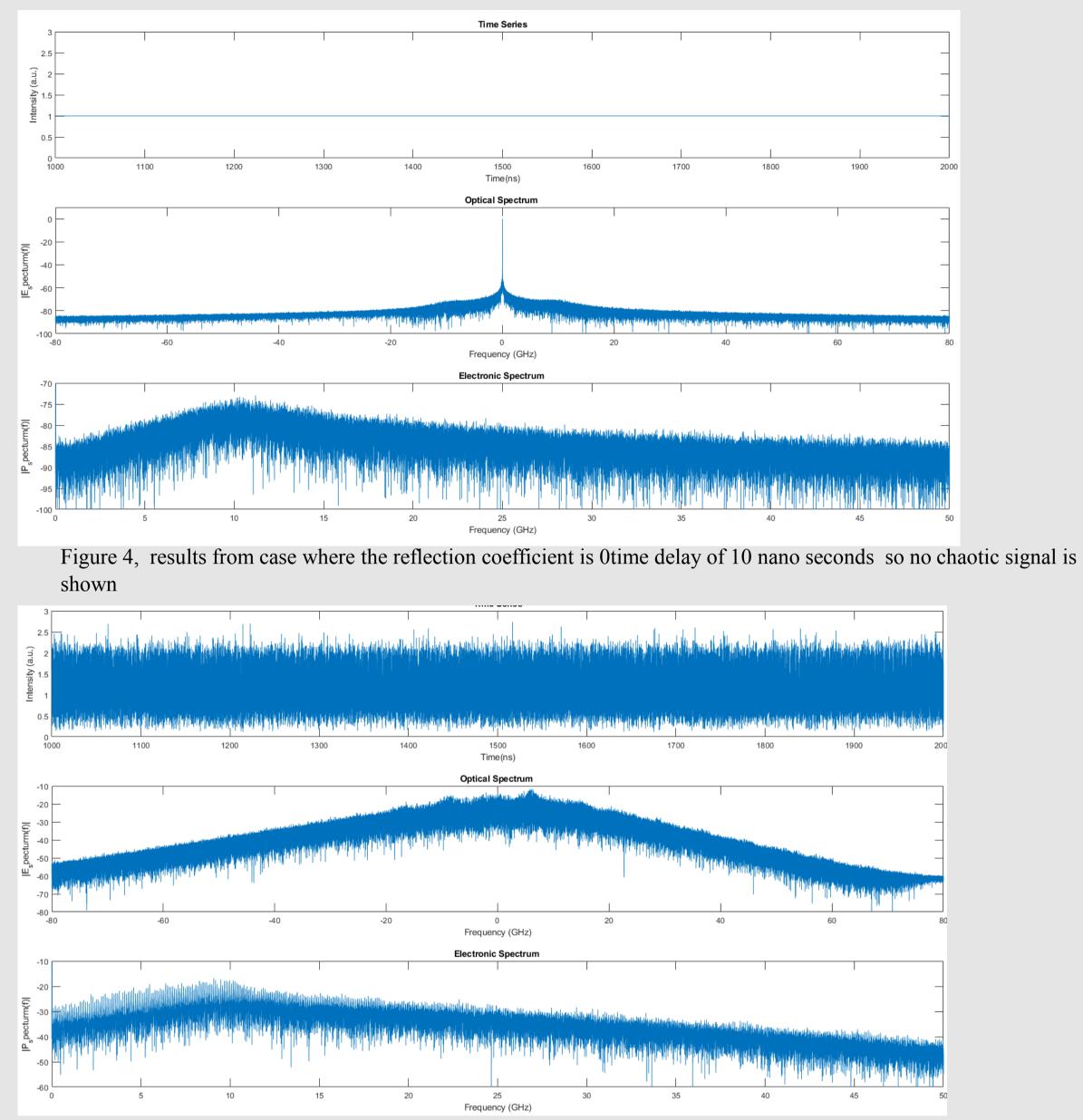


Figure 5, results from case where the reflection coefficient is 0.03 and time delay of 10 nano seconds

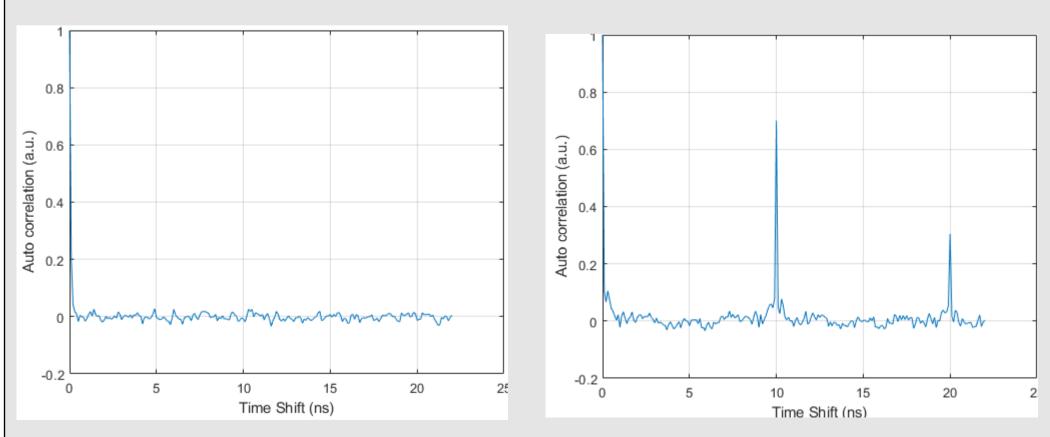


Figure 7 Auto correlation over time for feedback loop with no reflection coefficient

[1] "chaos theory and its applications in our real life" barishal university journal part 1, 5(1&2): 123-140 (2018) issn 2411-247x 123 hena rani biswas*,1, [2]Kane, D. M. & Shore, K. A. Unlocking Dynamical Diversity: Optical Feedback Effects on Semiconmd. Maruf hasan2 and shujit kumar bala1 ductor Lasers (Wiley, 2005) **By Ethan Baker**

Figure 8 Auto correlation over time for feedback loop with a reflection coefficient of 0.3, with peaks occuing at 10ns intervals the time delay in the loop